CLASS – X (MATHEMATICS)

Set – A

1.	 Which of the following statements is false: (A) sum of 2 irrational numbers is always irrational (B) product of 2 irrational numbers may be rational or irrational (C) sum of 2 irrational numbers may be rational or irrational (D) none of these 			
2.	Which of the following pairs of numbers are co - (A) 13, 17 (C) 108, 26	- prime ? (B) 81, 18 (D) 42, 56		
3.	Which of the following is not a polynomial?			
	(A) x ³ + 1	(B) $x + \frac{1}{x}$		
	(C) $x^2 - x$	(D) none of these		
4.	Which of the following polynomials has degree 2			
	(A) $\frac{X^2 + 1}{x^2}$	(B) $3x^2 + 5$		
	(C) $4x^3 - 3x^2 + 7$	(D) 8x ³ – 2		
5.	If the coordinates of opposite vertices of a square are (1, 3) and (6, 0) the length of a side a			
	square is $(\Delta) \sqrt{34}$	(B) 17		
	(C) 17	(D) 12		
6.	The distance between the points $A(0, -1)$ and $B(8, 3)$ is			
	(A) 4√5	(B) 6√5		
	(C) 8√5	(D) none of these		
7.	The equations $3x + 4y = 6$ and $\frac{3}{2}x + 2y = 4$ have			
	(A) unique solution(C) infinitely many solutions	(B) no solution(D) two solutions		
8.	For how many values of k, the system kx + 2y = (A) 0 (C) 2	5 and 3x + y = 1 has a unique solution (B) 1 (D) infinitely many		

INTERNATIONAL TALENT SEARCH EXAMINATION 2024 - 2025

9.	In the given figure, $\angle BAD = \angle CAD$, then DC is (A) 2.1 cm (B) 4.2 cm (C) 1.05 cm (D) 2 cm B 2.	A 4.2cm 5cm D C		
10.	If $\triangle ABC$ and $\triangle DEF$ are similar such that $2AB = DE$ and $BC = 8cm$, then $EF = 1000$			
	(A) 16 cm	(B) 12 cm		
		(D) 4 cm		
11.	$(\cos \theta - \sin \theta)(\sec \theta - \cos \theta)(\cot \theta + \tan \theta)$ is equal to			
	(A) 0	(B) sin θ		
	(C) –1	(D) 1		
12.	$(1 + \cot A - \csc A)(1 + \tan A + \sec A)$ is equal to			
	(A) 1	(B) –1		
	(C) 2	(D) None of these		
13.	Two cards are drawn at random from a pack of 52 cards. The probability of these two being aces is			
	(A) 1/26	(B) 1/221		
	(C) 1/2	(D) None of these		
14.	If the values of a, b, c is given from the set {1, 2, 3} where $a \neq b \neq c$ then the probability that			
	(A) 1/3	(B) 1/6		
	(C) 1/4	(D) 2/3		
15.	The circumference of a circle of radius 4.2 cm is (A) 26.4 cm	(B) 55 44 cm		
	(C) 30.04 cm	(D) 32.39 cm		
16	The area of a circle with circumference 44 cm is			
	(A) 149 cm^2	(B) 151 cm ²		
	(C) 154 cm ²	(D) 156 cm^2		
17.	If one root of quadratic equation $2x^2 + kx - 6 = 0$ is 2 then the other root is			
	(A) -1	(B) 2		
	(C) $-\frac{3}{2}$	(D) $\frac{3}{2}$		
18.	The roots of $4x^2 - 4ax + (a^2 - b^2) = 0$ are			
	(A) a + b, a – b	(B) $\frac{a+b}{2}, \frac{a-b}{2}$		
	(C) a + b , ab	(D) $\frac{a+b}{2}$, ab		
		-		

INTERNATIONAL TALENT SEARCH EXAMINATION 2024 - 2025

19. Maximum number of common tangents that can be drawn to two circles is

10.	(A) 2 (C) 4	(B) 3 (D) 6	
20.	Two different tangents can be drawn from a point to a circle. The point is (A) the centre of the circle		
	(C) inside the circle	(D) outside the circle	
21.	Which of the following is a term of the sequence (A) 184 (C) 186	e 3, 7, 11,? (B) 185 (D) 187	
22.	How many terms are there in the sequence?		
	3, 17, 31,, 101 ?		
	(A) /	(B) 6	
	(C) 8	(D) 9	
23.	A man on the bank of a river observes that th bank is 60°. While moving backward to a point to a position of 100 m from his former position height of the tree and the breadth of the river? (A) 50, 25 m	the angle subtended by a tree on the opposite in a straight line with the trees foot and moving n, he finds that angle to be 30°. What is the (B) $50\sqrt{3}$, 50 m	
	(C) 50, 50√ <u>3</u> m	(D) 52, 50√3 m	
24.	From the top of a building 60m, then angles of observed to be 30° and 60°. The height of light (A) 40 m (C) 20 m	depressions of top and bottom a lamp post are house is (B) 60 m (D) 80 m	
25.	Which of the following is not a measure of central tendency?		
	(C) mode	(D) standard deviations	
26.	The algebraic sum of the deviations of a freque (A) always positive (C) 0	ncy distribution from its mean is (B) always negative (D) a non-zero number	
27.	A solid is hemispherical at the bottom and conic are equal, then the ratio of its radius and the he (A) 1:3 (C) 1:1	cal above. If the surface areas of the two parts ight of its conical part is (B) $1 : \sqrt{3}$ (D) $\sqrt{3} : 1$	
28.	A circus tent is cylindrical to a height of 4 m an	d conical above it. If its diameter is 105 m and	

8. A circus tent is cylindrical to a height of 4 m and conical above it. If its diameter is 105 m and its slant height is 40 m, the total area of the canvas required in m² is

	•	
(A) 1760		(B) 2640
(C) 3960		(D) 7920