Duration : 60 min.

Class : 9th

Maximum Marks : 180
Subject : MATHEMATICS

International Talent Search Examination - 2022-23

अंतर्राष्ट्रीय प्रतिभा खोज परीक्षा - २०२२-२३

Savitri Skill Development Institute, Training Partner with Ministry of Micro Small & Medium Enterprises (MSME), Govt. of India.

TEST BOOKLET							
Name :							
Class :	School:						
Father's Name :		at <mark>her's Occupation:</mark>					
Mother's Name :		other's Occupation :					
Categories : Gen	ОВС	sc 🗀	ST				
Correspondence Address :			<u></u>				
Date of Birth :							
Father's Contact No :							
Home/Mother's Contact No.	:						
WhatsApp No. :							
Basic Instructions:							

- Ensure that your personal data has been entered correctly.
- ii. Immediately after opening the test booklet verify that all the pages are printed properly and are in order. If there is a problem with your test booklet, immediately inform the invigilator. You will provided with the replacement.
- iii. All questions in are compulsory.
- iv. For every correct answer you will be awarded with 4 marks and for all incorrect answer 1 mark will be deducted.
- v. Directions for answering the questions are given. Read those directions carefully and answer the question by circling the bubble in the OMR Sheet Provided to you. Test booklet/OMR Sheet will be submitted at the end of the examination.
- vi. Follow the instructions given by the invigilator. Students found violating the instructions will be disqualified.
- vii. Rough work can be done separately or on the Question paper.
- viii. Please fill the bubbles in OMR sheet with Blue or Black pen only.
- ix. Do not tear the question paper or OMR sheet else you will be disqualified in the examination.

 $\sqrt{(x)^3}$

CLASS-9 MATHEMATICS

1.		Value	of	⁴ √(81) ⁻²	is
----	--	-------	----	----------------------------------	----

- (A)
- (C)
- (D)

2. Value of
$$(256)^{0.16} \times (256)^{0.09}$$
 is

- (A) 4
- (B) 16
 - (C) 64
- 256.25 (D)

3. Which of the following is equal to
$$x$$
?

(A)
$$x^{\frac{12}{7}} - x^{\frac{5}{7}}$$
 (B) $(x^4)^{\frac{1}{3}}$ (C) $(\sqrt{x^3})^{\frac{2}{3}}$ (D) $(x^7)^{\frac{12}{7}} \times x^{\frac{7}{12}}$

- (A) 5
- (B) 1
- (C) 1
- (D)

. If P (5, 1), Q (8, 0), R (0, 4), S (0, 5) and O (0, 0) are plotted on the graph paper, 5. then the point(s) on the x-axis are

- P and R (A)
- R and S (B)
- (C) Only Q
- O and O (D)

- (A) I and II quadrants
- (B) ... I and IV quadrants

I quadrant only (C)

(D) II quadrant only

- 13 chapters (B) 12 chapters (C) 11 chapters
- 9 chapters (D)
- The total number of propositions in the Elements are: 8.
 - (A) 465
- (B) 460
- (C) 13
- (D) 55

Boundaries of solids are:

- (A) surfaces
- **(B)** curves
- **(C)** lines
- (D) points

Degree of the zero polynomial is 10.

- (A)
- (B) 1
- (C) Any natural number

(D) Not defined

11.	$\text{If } p(x) = x^2 -$	$-2\sqrt{2}x+1$, then $P(2-\frac{1}{2})$	$\sqrt{2}$) is equal to
	(A) 0	(B) 1	(C) 4√
12.	The value of t	he polynomial $5x - 4$	$4x^2 + 3$, when $r =$

13 . Which of the following is a factor of
$$(x + y)^3 - (x^3 + y^3)$$
?

(A) $x^2 + y^2 + 2xy$ (B) $x^2 + y^2 - xy$ (C) xy^2 (D) $3xy$

14. The coefficient of x in the expansion of
$$(x + 3)^3$$
 is

(A) 1 (B) 9 (C) 18 (D) 27

15. If
$$\frac{x}{y} + \frac{y}{x} = -1$$
 (x, y \neq 0), the value of $x^3 - y^3$ is

(A) 1 (B) -1 (C) 0 (D)
$$\frac{1}{2}$$

- 16. If we multiply or divide both sides of a linear equation with a non-zero number, then the solution of the linear equation:
 - (A) Changes
 - (B) Remains the same
 - (C) Changes in case of multiplication only
 - (D) Changes in case of division only
- 17. How many linear equations in x and y can be satisfied by x = 1 and y = 2?
 - (A) Only one (B) Two (C) Infinitely many (D) Three
- 18. The point of the form (a, a) always lies on:
 - (A) x-axis (B) y-axis (C) On the line y = x (D) On the line x + y = 0
- 19. An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is

(A)
$$37\frac{1}{2}^{\circ}$$
 (B) $52\frac{1}{2}^{\circ}$ (C) $72\frac{1}{2}^{\circ}$ (D) 75°

(D) $8\sqrt{2} + 1$

20.		_	_			7. The triang		
	(A)	an acute an	gled tria	angle	(B)	an obtuse a	ngled tria	ingle
	(C)	a right trian	gle		(D)	an isoscele:	s triangle	
21.		of the angle ther two angl		_	0°, thei	n the angle be	tween the	e bisectors o
	(A)	50°	(B)	65°	(C)	145°	(D)	155°
22.	In Δ	PQR, if∠R:	> ∠Q, tl	hen				
	(A)	QR > PR	(B)	PQ > PR	(C)	PQ < PR	(D)	QR < PR
23.	. In tri	angles ABC a	ınd PQF	R, AB = AC,	∠C = ∠	$\angle P$ and $\angle B = A$	∠Q. The	two triangles
	are							
	(A)	isosceles b	ut not co	ongruent	(B)	isosceles an	d congru	ent
	(C)	congruent l	out not i	sosceles	(D)	neither con	gruent no	r isosceles
24.		angles ABC			and ∠	$A = \angle D$. The	two tria	ngles will be
	(A)	BC = EF	(B)	AC = DE	(C)	AC = EF	(D)	BC = DE
25.	. The f	igure formed	by join	ing the mid-p	oints o	f the sides of a	a quadrila	teral ABCD.
		in order, is a		The second second				
	(A)	ABCD is a						
	(B)	diagonals o		_		1 ?		
		diagonals o				endicular		
26	(D)	-		are perpend		ABCD inter	sect each	other at the
20.		•		•		en ∠DBC is o		other at the
	(A)	24°	(B)	86°	(C)		(D)	32°
27.	. Whic	h of the follo	wing is	not true for a	paralle	elogram?		
	(A)	opposite sic	des are e	equal				
	(B)	opposite an	gles are	equal				
	(C)	opposite an	gles are	bisected by	the dia	gonals		
	(D)	diagonals b				-		

Study Center: 146-C, 2nd Floor, Hastsal, Vikaspuri, New Delhi- 110018

- 28. ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD
 - (A) is a rectangle

- (B) is always a rhombus
- (C) is a parallelogram
- (D) need not be any of (A), (B) or (C)
- 29. If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is
 - (A) = 1:3
- (B) 1:2
- (C) = 3:1
- (D) 1:4
- 30.). ABCD is a trapezium with parallel sides AB = a cm and DC = b cm (Fig. 9.6). E and F are the mid-points of the non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is
 - $(A) \quad a:b$
 - (B) (3a+b): (a+3b)
 - (C) (a+3b):(3a+b)
 - (D) (2a+b):(3a+b)

- In Fig. 10.7, if $\angle DAB = 60^{\circ}$, $\angle ABD = 50^{\circ}$, then $\angle ACB$ is equal to:
 - $(A) 60^{\circ}$
- (B) 50°
- (C) 70°

(D) 80°

Fig. 10.7

- 32. ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and $\angle ADC = 140^{\circ}$, then $\angle BAC$ is equal to:
 - $(A) 80^{\circ}$
- (B) 50°
- $(C) 40^{\circ}$
- (D) 30°
- 33. In Fig. 10.8, BC is a diameter of the circle and $\angle BAO = 60^{\circ}$. Then $\angle ADC$ is equal to :
 - $(A) 30^{\circ}$
- (B) 45°
- $(C) 60^{\circ}$
- (D) 120°

Fig. 10.8

- 34. With the help of a ruler and a compass it is not possible to construct an angle of :
 - 37.5° (A)
- 40° (B)
- (C) 22.5°
- (D) 67.5°
- 35. The construction of a triangle ABC, given that BC = 6 cm, $\angle B = 45^{\circ}$ is not possible when difference of AB and AC is equal to:
 - (A) 6.9 cm
- (B) 5.2 cm
- (C) 5.0 cm
- (D)4.0 cm
- 36. The construction of a triangle ABC, given that BC = 3 cm, $\angle C = 60^{\circ}$ is possible when difference of AB and AC is equal to:
 - 3.2 cm (A)
- (B) 3.1 cm (C)
- 3 cm
- (D) 2.8 cm
- 37. The sides of a triangle are 35 cm, 54 cm and 61 cm, respectively. The length of its longest altitude
 - (A) $16\sqrt{5}$ cm (B) $10\sqrt{5}$ cm (C) $24\sqrt{5}$ cm

- (D) 28 cm
- 38. The area of an isosceles triangle having base 2 cm and the length of one of the equal sides 4 cm, is

 - (A) $\sqrt{15} \text{ cm}^2$ (B) $\sqrt{\frac{15}{2}} \text{ cm}^2$ (C) $2\sqrt{15} \text{ cm}^2$ (D) $4\sqrt{15} \text{ cm}^2$
- 39. The edges of a triangular board are 6 cm, 8 cm and 10 cm. The cost of painting it at the rate of 9 paise per cm² is
 - (A) Rs 2.00
- (B) Rs 2.16
- (C) Rs 2.48
- (D) Rs 3.00

40.		number of p which is 16			•		cm) that car	ı b e stored ir	מ
	(A)	1900	(B)	1920	(C)	1800	(D)	1840	
41.		length of	_	est pole t	hat can l	pe put in	a room of	dimensions	S

(10 11 × 10 (11 × 201)) (5										
	(A)	15 m	(B)	16 m	(C)	10 m	(D) 12 m			

^{44.} In a medical examination of students of a class, the following blood groups are recorded:

Blood group	A	AB	В	0
Number of students	10	13	12	5

A student is selected at random from the class. The probability that he/she has blood group B, is:

(A)
$$\frac{1}{4}$$
 (B) $\frac{13}{40}$ (C) $\frac{3}{10}$ (D) $\frac{1}{8}$

45. Two coins are tossed 1000 times and the outcomes are recorded as below:

Number of heads	2	1	0
Frequency	200	550	250

Based on this information, the probability for at most one head is

(A)
$$\frac{1}{5}$$
 (B) $\frac{1}{4}$ (C) $\frac{4}{5}$ (D) $\frac{3}{4}$

^{43.} In a survey of 364 children aged 19-36 months, it was found that 91 liked to eat potato chips. If a child is selected at random, the probability that he/she does not like to eat potato chips is:

