Duration: 60 min.Maximum Marks: 180Class: 10thSubject: MATHEMATICS

International Talent Search Examination - 2022-23

अंतर्राष्ट्रीय प्रतिभा खोज परीक्षा - २०२२-२३

Savitri Skill Development Institute, Training Partner with Ministry of Micro Small & Medium Enterprises (MSME), Govt. of India.

	TEST BO	OKLET	
Name :			
Class :	School:		
Father's Name :		at <mark>her's Occupation</mark> :	
Mother's Name :		other's Occupation :	
Categories : Gen	ОВС	sc 🗀	ST
Correspondence Address :			<u></u>
Date of Birth :			
Father's Contact No :			
Home/Mother's Contact No.			
WhatsApp No. :			
Basic Instructions:			

- i. Ensure that your personal data has been entered correctly.
- ii. Immediately after opening the test booklet verify that all the pages are printed properly and are in order. If there is a problem with your test booklet, immediately inform the invigilator. You will provided with the replacement.
- iii. All questions in are compulsory.
- iv. For every correct answer you will be awarded with 4 marks and for all incorrect answer 1 mark will be deducted.
- v. Directions for answering the questions are given. Read those directions carefully and answer the question by circling the bubble in the OMR Sheet Provided to you. Test booklet/OMR Sheet will be submitted at the end of the examination.
- vi. Follow the instructions given by the invigilator. Students found violating the instructions will be disqualified.
- vii. Rough work can be done separately or on the Question paper.
- viii. Please fill the bubbles in OMR sheet with Blue or Black pen only.
- ix. Do not tear the question paper or OMR sheet else you will be disqualified in the examination.

CLASS-10 MATHEMATICS

1.	If two positive integers a and	b are written as	
	$a = x^{3}y^{2}$ and $b = xy^{3}$; x, y are	prime numbers, then HCF (a, b) is	
	$(A) xy \qquad \qquad (B) xy$	$(C) x^3y^3 \qquad (D)$	$)) x^2y^2$
2.	If two positive integers p and	q can be expressed as	
	$p = ab^2$ and $q = a^3b$; a , b bein	g prime numbers, then LCM (p, q)	is
	(A) ab (B) a^2b^2	(C) a^3b^2 (I	a^3b^3
3.	The product of a non-zero rati	onal and an irrational number is	
	(A) always irrational	(B) always rational	
	(C) rational or irrational	(D) one	
4.	If $x = a$, $y = b$ is the solution of the of a and b are, respectively	e equations $x - y = 2$ and $x + y = 4$, then	the values
	(A) 3 and 5	(B) 5 and 3	
	(C) 3 and 1	(D) -1 and -3	
5.		oins with her. If the total number of co ey with her is Rs 75, then the number of	
	(A) 35 and 15	(B) 35 and 20	
	(C) 15 and 35	(D) 25 and 25	
6.	_	son's age. Four years hence, the age of the present ages, in years, of the s	
	(A) 4 and 24	(B) 5 and 30	
	(C) 6 and 36	(D) 3 and 24	
7.	The zeroes of the quadratic poly	$y_{\text{nomial } x^2 + kx + k, \ k \neq 0,}$	
	(A) cannot both be positive	(B) cannot both be negati	ive
	(C) are always unequal	(D) are always equal	

8.	If the zeroes of	the quadratic	polynomial	$ax^2 + bx$	+ c, c ≠ 0 are e	qual, then
	(A) c and a has	ve opposite sig	ns	(B) c	and b have oppose	posite signs
	(C) c and a has	ve the same sig	g n	(D) c	and b have the	e same sign
9.	If one of the zer of the other, the	•	atic polynon	nial of the	$form x^2 + ax + b$	b is the negative
	(A) has no line	ar term and the	constant te	rm is neg	gative.	
	(B) has no line	ar term and the	constant te	rm is pos	itive.	
	(C) can have a	linear term bu	t the consta	nt term is	negative.	
	(D) can have a				-	
	,				•	
10.	Two APs have -1 and that of					
	(A) -1	(B)-8	(C) 7		(D) -9	
11.	If 7 times the term will be	7th term of an A	AP is <mark>e</mark> qual	to 11 tim	es its 11 th term	n, then its 18th
	(A) 7	(B) 11	(C) 1	8	(D) 0	
12.	The 4th term fr	om the end of	the AP: -1 l	, -8, -5,	, 49 is	
	(A) 37	(B) 40	(C) 4	3	(D) 58	
	1/1/5	- 30V				
40	# - · 2 · - · · · · - · · · · · · · · · ·		. 6 a 20 km			
13	If $px^2 + qx + r = 0$ has (a) $\frac{q^2}{r^2}$	s equal roots, value	orr will be	_{th} q^2		
	40			$(b) - \frac{q}{4p}$		
	(c) $\frac{4p}{\sigma^2}$			(d) none	of these	
14.	Positive value of p fo	or which equation a	$r^2 + px + 64 = 0$		•	we real roots will be
	(a) p ≥ 16 (c) p = 16			(b) p ≤ 1	6 of these	
15.	If equation $9x^2 + 6px$	x + 4 = 0 has equal i	roots, then both			
	(a) $\pm \frac{2}{3}$		(b) ±3			
	(c) $\pm \frac{3}{2}$		(d) 0			
40	2	1 have an enal	(d) 0			
16.	If the equation $x^2 - 1$ (a) $-2 < k < 2$	kx + i, nave no real	roots, then	(b) −3 <	k<3	
	(c) k > 2			(d) k < -		

03

- If in triangles ABC and DEF, $\frac{AB}{DE} = \frac{BC}{ED}$, then they will be similar, when 17.
 - (A) $\angle B = \angle E$

(B) $\angle A = \angle D$

(C) $\angle B = \angle D$

- (D) $\angle A = \angle F$
- If \triangle ABC \sim \triangle QRP, $\frac{\text{ar}(A BC)}{\text{ar}(POR)} = \frac{9}{4}$, AB = 18 cm and BC = 15 cm, then PR is equal to
 - (A) 10 cm
- (B) 12 cm (C) $\frac{20}{3}$ cm

- (D) 8 cm
- If S is a point on side PQ of a \triangle PQR such that PS = QS = RS, then 19.
 - (A) $PR \cdot QR = RS^2$

- (B) $OS^2 + RS^2 = OR^2$
- (C) $PR^2 + OR^2 = PO^2$
- (D) $PS^2 + RS^2 = PR^2$
- The fourth vertex D of a parallelogram ABCD whose three vertices are A (-2, 3), B (6, 7) and C (8, 3) is
 - (A)(0,1)

- (B) (0, -1) (C) (-1, 0)
- -(D)(1,0)
- If the point P (2, 1) lies on the line segment joining points A (4, 2) and B (8, 4), then
 - (A) $AP = \frac{1}{3} AB$ (B) AP = PB (C) $PB = \frac{1}{3} AB$ (D) $AP = \frac{1}{2} AB$

- 22. If P $\frac{a}{3}$, 4 is the mid-point of the line segment joining the points Q (-6, 5) and
 - R (-2, 3), then the value of a is
 - (A) 4
- (B) 12

- (C) 12
- (D) 6

- 23. To divide a line segment AB in the ratio 5:6, draw a ray AX such that \angle BAX is an acute angle, then draw a ray BY parallel to AX and the points A_1 , A_2 , A_3 , ... and B_1 , B_2 , B_3 , ... are located at equal distances on ray AX and BY, respectively. Then the points joined are
 - (A) A_5 and B_6 (B) A_6 and B_5 (C) A_4 and B_5 (D) A_5 and B_4
- 24. To construct a triangle similar to a given $\triangle ABC$ with its sides $\frac{3}{7}$ of the corresponding sides of $\triangle ABC$, first draw a ray BX such that $\angle CBX$ is an acute angle and X lies on the opposite side of A with respect to BC. Then locate points B_1 , B_2 , B_3 , ... on BX at equal distances and next step is to join
 - (A) B_{10} to C (B) B_3 to C (C) B_7 to C (D) B_4 to C
- 25. To construct a triangle similar to a given $\triangle ABC$ with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle ABC$ draw a ray BX such that $\angle CBX$ is an acute angle and X is on the opposite side of A with respect to BC. The minimum number of points to be located at equal distances on ray BX is
 - (A) 5 (B) 8 (C) 13 (D) 3
- 26. If $\cos (\alpha + \beta) = 0$, then $\sin (\alpha \beta)$ can be reduced to
 (A) $\cos \beta$ (B) $\cos 2\beta$ (C) $\sin \alpha$ (D) $\sin 2\alpha$
- 27. The value of (tan1° tan2° tan3° ... tan89°) is
 - (A) 0 (B) 1 (C) 2 (D) $\frac{1}{2}$
- 28. If $\cos 9\alpha = \sin \alpha$ and $9\alpha < 90^{\circ}$, then the value of $\tan 5\alpha$ is
 - (A) $\frac{1}{\sqrt{3}}$ (B) $\sqrt{3}$ (C) 1 (D) 0

Fig. 9.5

In Fig. 9.6, if O is the centre of a circle, 30. PQ is a chord and the tangent PR at P makes an angle of 50° with PQ, then ∠POQ is equal to

Fig. 9.6

In Fig. 9.7, if PA and PB are tangents 31. to the circle with centre O such that $\angle APB = 50^{\circ}$, then $\angle OAB$ is equal to

Fig. 9.7

- 32. If the perimeter of a circle is equal to that of a square, then the ratio of their areas is
 - (A) 22:7
- (B) 14:11
- (C) 7:22
- (D) 11: 14

33.	It is proposed to build a single circular park equal in area to the sum of areas of
	two circular parks of diameters 16 m and 12 m in a locality. The radius of the new
	park would be

- (A) 10 m
- (B) 15 m
- (C) 20 m
- (D) 24 m

- (A) $36 \pi \text{ cm}^2$
- (B) $18 \pi \text{ cm}^2$
- (C) $12 \pi \text{ cm}^2$
- (D) $9 \pi \text{ cm}^2$
- 35. Twelve solid spheres of the same size are made by melting a solid metallic cylinder of base diameter 2 cm and height 16 cm. The diameter of each sphere is
 - (A) 4 cm
- (B) 3 cm
- (C) 2 cm
- (D) 6 cm
- 36. The radii of the top and bottom of a bucket of slant height 45 cm are 28 cm and 7 cm, respectively. The curved surface area of the bucket is
 - (A) 4950 cm²
- (B) 4951 cm²
- (C) 4952 cm²
- (D) 4953 cm²
- 37. A medicine-capsule is in the shape of a cylinder of diameter 0.5 cm with two hemispheres stuck to each of its ends. The length of entire capsule is 2 cm. The capacity of the capsule is
 - (A) 0.36 cm³
- (B) 0.35 cm^3
- (C) 0.34 cm^3
- (D) 0.33 cm³

38. If
$$x^2 + 5px + 16$$
 has no real roots, then

- (b) $\frac{-8}{5}$
- (d) none of these
- 39. For $ax^2 + bx + c = 0$, which of the following statement is wrong?
 - (a) If $b^2 4ac$ is a perfect square, the roots are rational.
 - (b) If $b^2 = 4ac$, the roots are real and equal.
 - (c) If $b^2 4ac$ is negative, no real roots exist.
 - (d) If $b^2 = 4ac$, the roots are real and unequal.

40. If (x + 1) is a factor of $2x^3 + ax^2 + 2bx + 1$, then find the values of a and b given that 2a - 3b = 4

(a)
$$a = -1$$
, $b = -2$ (b) $a = 2$, $b = 5$

(b)
$$a = 2, b = 5$$

(d)
$$a = 2, b = 0$$

41. The number of zeroes that polynomial $f(x) = (x - 2)^2 + 4$ can have is:

(a) 1

(b) 2

(c) 0

(d) 3

42. The zeroes of the polynomial $f(x) = 4x^2 - 12x + 9$ are:

- (c) 3,4

(d) -3, -4

Customers are asked to stand in the lines. If one customer is extra in a line, then there would be two less lines. If one customer is less in line, there would be three more lines. Find the number of students in the class.

- (a) 40
- (b) 50
- (c) 60
- (d) 70

8 girls and 12 boys can finish work in 10 days while 6 girls and 8 boys can finish it in 14 days. Find the time taken by the one girl alone that by one boy alone to finish the work.

- (a) 120, 130
- (b) 140,280
- (c) 240,280
- (d) 100,120

The sum of two digits and the number formed by interchanging its digit is 110. If ten is subtracted from the first 45. number, the new number is 4 more than 5 times of the sum of the digits in the first number. Find the first number.

- (a) 46
- (b) 4B
- (c) 64
- (d) 84

80